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Abstract

This study examines the volatility forecasting of Nvidia (NVDA) stock returns from 2018 to
2023 using GARCH-type models under normal and Student distributions. By estimating and
comparing the performance of GARCH, GJR-GARCH, IGARCH, and RiskMetrics models, we
assess their predictive capabilities using standard forecasting accuracy metrics. Our results
indicate that while the GJR-GARCH model slightly outperforms others, the Diebold-Mariano
and Model Confidence Set tests suggest no significant differences in predictive accuracy across
models. These findings emphasize the robustness of various GARCH-type models in financial
forecasting.
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1 Introduction

On 5 November 2024, the American company Nvidia (NVDA) overtook Apple and became the
world’s largest market capitalisation, with an estimated value of USD 3.4 trillion. The chip com-
pany is one of the big winners in the boom and commercial development of LLM artificial in-
telligence models such as ChatGPT. Just like cryptocurrencies, machine learning models require
significant graphical computing power. According to the survey agency TrendForce, it would take
more than 30,000 graphics cards to train the OpenAI model. Given that the graphics cards in
question cost around USD 10,000 (Nvidia A100), we’re talking about revenue of around 300 mil-
lion for Nvidia just on this artificial intelligence model. Moreover, Nvidia is the world leader in
mass-market graphics cards. With a market share of 90% in 2024, the Californian group enjoys a
near-monopoly position, enabling it to charge higher prices than its direct competitors AMD and
Intel.

Given the increasing importance of high-frequency trading and risk management in financial
markets, accurately modeling and forecasting stock return volatility has become a critical chal-
lenge. Nvidia’s dominant market position and exposure to technological advancements make it an
interesting case for volatility analysis. The primary objective of this study is to determine which
GARCH-type model provides the most accurate volatility forecasts for NVDA returns. To ad-
dress this question, we will first describe the dataset and examine statistical properties of Nvidia’s
returns. Then, we will estimate various GARCH-family models under normal and Student dis-
tributions. Finally, we will compare forecasting accuracy through statistical tests, including the
Model Confidence Set and Diebold-Mariano tests.

2 Data

2.1 Asset description

Founded in 1993 by current CEO Jensean Huang, Nvidia is a company that belongs to the large
semiconductor industry. One must keep in mind that Nvidia is a software company which designs
and supplies chips but does not make them. Similarly to many of its Californian competitors,
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Nvidia uses Asian suppliers to manufacture its products.

Nvidia went public on January 22, 1999 and the 3 largest shareholders of Nvidia in early 2024
were The Vanguard Group (8.280%), BlackRock (5.623%) and Fidelity Investments (5.161%). As
mentionned earlier, Nvidia has one of the world’s largest market capitalisation. Nvidia’s asset can
be traded on the NASDAQ, an American stock exchange based in New York City. It is the most
active stock trading venue in the U.S. by volume, and ranked second on the list of stock exchanges
by market capitalization of shares traded, behind the New York Stock Exchange. Additionnaly,
the company is listed on the SP500 stock market index which is composed of 500 of the largest
companies listed on stock exchanges in the United States.

In recent years, Nvidia has seen its sales and net profit grow significantly (Figure 1). In 2024,
the company achieved record sales of US$60.92 billion and net income of US$29.76 billion. The
company has more than 30,000 employees, which is 3 times more than 10 years ago in 2015 (Figure
1). This dynamic is particularly noticeable in the light of the massive downsizing that the tech
world has experienced in the post-covid period.

Figure 1: Nvida revenue, net income and number of employees (2014-2023)
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2.2 Outliers detection

Figure 2 shows the evolution of raw and corrected returns. Outliers can be identified by the green
peaks. Among the detected points, three seem to be particularly important. The most important
appears on 25 May 2023 and follows the announcement of the company’s results. Following the
boom in AI that year, the company made record profits and saw its share price rise significantly.
The second outlier, this time negative, appeared on 16 March 2020. This fall was probably due
to the uncertainty surrounding the lockdown and covid 19. On that day, the French President
announced that France was going to war against the Covid19 epidemic. Finally, the third most
important outlier occurred on 16 November 2018. After missing revenue expectations, the share
price fell by 19%.
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Figure 2: NVDA raw and clean returns over time (2018-2023)
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2.3 Returns analysis

Figure 3 shows the evolution of the NVDA share over time. Atypical values are identified by red
dots. We can see that the share price rose sharply between 2020 and the end of 2023, from $5 per
share to $50 per share, an increase of 1,000%. We can also see that the share price fell sharply
throughout 2022, before rising again in 2023.

Figure 3: NVDA raw value over time (2018-2023)
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Figure 4 shows the evolution of returns and returns squared for the nvidia share over the pe-
riod studied. We notice that there is significant volatility, which is to be expected considering the
daily data available. The squared returns provide us a proxy for the volatility of the share’s returns.

Figure 4: NVDA clean returns and squared returns over time (2018-2023)
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2.3.1 Correlogram

One of the properties of financial series is the autocorrelation of the squared returns, rt2, whereas
the profitability, rt, shows little or no autocorrelation. We are therefore interested in the autocor-
relation and partial autocorrelation functions of the returns and the squared returns.

Figure 5 shows the ACF and PACF of the returns and the squared returns. Regarding the
returns, we observe that the ACF shows only a very significant 1 lag and that the PACF has no
definite lag structure. However, in terms of squared returns, we detect a decreasing structure in
the number of lags, which indicates a certain persistence in volatility.

Figure 5: Returns ACF and PACF
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(b) Returns PACF
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(c) Squared returns ACF
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2.3.2 Descriptive statistics

Table I shows us the descriptive statistics for the NVIDIA share’s returns, along with tests on
the distribution of returns. The table shows that NVIDIA is a relatively profitable asset since the
average and the median are both higher than the CAC40 reference asset. Over the period studied,
the average daily return on the asset was 0.2 % compared with 0.03 % for the CAC40. In terms of
volatility, measured by the standard deviation, the US asset is more volatile (3.06% > 1.18%) than
the French index. This seems logical, since the CAC index comprises 40 different companies, and
risk and volatility are mechanically lower. This increased volatility is confirmed by the maximum
and minimum returns achieved by the NVIDIA asset, both of which are higher than those of the
CAC40. NVDIA’s extremes are around -10% and +10%, whereas the CAC40 is around -4.5% and
+4.5%.

Concerning the distribution of returns, we note that the skewness is slightly below 0 (-0.019)
and that the Kurtosis is above 0 (0.95). We can therefore expect the series not to follow a normal
distribution. To confirm these intuitions, we can look at the statistical tests at the end of Table
I. The Jarque-Bera test compares the skewness and kurtosis of the series studied with that of a
Normal distribution. As the p-value of the test is less than 0.05, we reject the null hypothesis
that the series follows a Normal distribution. Next, we used the Ljung-Box test to identify the
presence or absence of autocorrelation. As the p-value of the test is less than 0.05, we reject the
null hypothesis, which indicates that there is no autocorrelation between the returns. Finally, we
completed our analysis by applying an LM-ARCH test for 5 and 10 lags. This test will allow us to
identify potential heteroscedasticity in the residuals of the returns. For the two lags, the pvalue is
less than 0.05, so we reject the null hypothesis which indicates that the residuals are homoscedastic.
Following the three tests, we can conclude that our profitability series does not follow a Normal
distribution and that the residuals are heteroskedastic and auto-correlated.

4



Table I: Descriptive Statistics and Tests for Daily Returns (Clean Data)

Descriptive Statistics

Minimum -9.84
Maximum 10.12
Mean 0.20
Median 0.26
Variance 9.37
Standard Deviation 3.06
Skewness -0.019
v1 -0.31
Excess Kurtosis 0.95
v2 7.53

Statistical Tests

Jarque-Bera (JB) Test
X2 = 57.495

p-value = 3.27× 10−13

Ljung-BoxQ(10)
X2 = 37.149

p-value = 5.33× 10−5

Lagrange Multiplier ARCH Test
ARCH(5): X2 = 132.84, p-value < 2.2× 10−16

ARCH(10): X2 = 159.23, p-value < 2.2× 10−16

Figure 6 confirms the results obtained above. The blue curve represents a normal distribution,
while the purple curve represents the distribution of our series. We can see that the distribution of
returns is more concentrated in the centre and that the tails of the distributions are thicker. The
figure also confirms that V2 is positive, indicating a leptokurtic distribution.

Figure 6: Distribution of returns values
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3 Estimation of volatility models over 2018-2022

This second part involves estimating the various models in order to be able to forecast the volatility
of returns. To take account of conditinonal heteroscedasticity, we will use models of the ARCH-
GARCH class. We will estimate 4 different models: GARCH, GJR-GARCH, IGARCH and Risk-
metrics. For each of these four models, we will estimate volatility using two distributions: Normal
and Student. This gives us a total of 8 models to estimate. Once the valid models have been
identified, we will comment on the best model.
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Table II shows us that all the estimated models are correct. In fact, they all respect the con-
straints of stationarity, positivity and significance of the variables. Although the models seem
similar, we note that the GJR-GARCH model stands out from the others with a higher Log-
Likelihood and lower information criteria.

Table II: Comparative table of models estimated from a Normal distribution

Coefficient |t-value> 1.64 persistance half-life log-likehood Akaike HQ

GARCH

ω > 0 0.000 3.350

0.969 20.890 3218.560 -4.260 -4.260
α ≥ 0 0.099 5.420
β ≥ 0 0.870 36.680

α+ β < 1 0.969

GJR-GARCH

ω > 0 0.000 3.410

0.962 17.750 3224.228 -4.267 -4.260

α 0.058 3.260
β ≥ 0 0.860 34.151
γ 0.088 2.980

α+ γ ≥ 0 0.145
α+ β + (γ/2) < 1 0.962

IGARCH
ω > 0 0.000 4.879

3212.585 -4.254 -4.250α ≥ 0 0.117 6.526
β 0.883

Riskmetrics
α 0.060

3200.110 -4.240 -4.239
β 0.940

The results of the Table II are very close to the previous table since, once again, all the models
are significant and the best model is once again the GJR-GARCH model.

Table III: Comparative table of models estimated from a Student distribution

Coefficient |t-value> 1.64 persistance half-life log-likehood Akaike HQ

GARCH

Cst(V) > 0 0.000 3.980

0.979 32.000 3230.562 -4.275 -4.269
α ≥ 0 0.100 5.110
β ≥ 0 0.880 36.410

α+ β < 1 0.980
Student 9.380 4.220

GJR-GARCH

Cst(V) > 0 0.000 2.608

0.974 26.430
3237.819 -4.283

-4.276

α 0.050 2.770
β ≥ 0 0.870 31.137
γ 0.110 3.153

α+ γ ≥ 0 0.160
α+ β + (γ/2) < 1 0.970

Student 9.290 4.861

IGARCH

Cst(V) > 0 0.000 3.458

3228.638 -4.274 -4.269
α ≥ 0 0.110 6.328
β 0.890

Student 7.830 5.130

Riskmetrics
α 0.060

3220.400 -4.266 -4.263β 0.940
Student 8.810 5.611

We have just seen that for both distributions, the GJR-GARCH model performed better in
predicting the volatility of returns. Now, if we compare the two distributions, we can see that the
GJR-GARCH student performs better because it maximises the Log-Likelihood and minimises the
information criteria. Therefore, we keep this model for the rest of the analysis.

The GJR-GARCH Student model has a persistence of 0.974 (Table III), which means that a
volatility shock will disappear over time but it will take time because the persistence is relatively
close to 1. As for the half live, it is 26.430 which means that following a volatility shock, it will
take about 26 days to return to the mean.

To verify that our GJR-GARCH Student model is valid, we need to test certain hypotheses
on the residuals (Table IV). All the tests on the residuals have a p-value greater than 0.05, which
means that we do not reject the null hypotheses of non-autocorrelation and homoscedasticity of the
residuals. Thus, at the 1% risk threshold, there is no evidence of autocorrelations of the residuals
or of homoscdasticity of the residuals. Therefore, the model is valid.
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Table IV: Diagnosis of the residuals of the GJR-GARCH model with a Student distribution

Test Value p-value

Ljung-Box Test on Standardized Residuals Q(5) = 1.527 0.7332
Weighted Ljung-Box Test on Standardized Squared Residuals Q2(5) = 3.1324 0.3834
Weighted LM-ARCH(5) 4.394 0.1416

4 Volatility forecast for 2023

In this section, we will forecast the volatility of NVDA asset returns over the period 2023. To this
end, we will predict the variance for the models we validated earlier. Once the models have been
estimated, we can compare the models in terms of forecast accuracy and accuracy comparison tests.

Table V: Results of the models under the Normal and Student distributions

Normal distribution

Model MSE Rank R MCS R (pvalue) R2OOS

GARCH 0.95 6 0.15 0.00042
GJR-GARCH 0.95 5 0.69 0.0013
IGARCH 0.95 1 1.0000 -0.0011
Riskmetrics 0.95 4 0.92 —

Student distribution

Model MSE Rank R MCS R (pvalue) R2OOS

GARCH 0.95 8 0.10 -0.0001
GJR-GARCH 0.95 2 1.0000 0.0011
IGARCH 0.95 7 0.15 -0.0011
Riskmetrics 0.95 3 1.0000 0.005

Table V presents the forecasting performance of the estimated models under both normal and
Student distributions. The Mean Squared Error (MSE) remains constant across models, indicating
that MSE alone is not sufficient to differentiate forecasting quality.

Regarding the out-of-sample R2 (R2OOS), we observe that the GJR-GARCH model consis-
tently outperforms the Riskmetrics model, regardless of the assumed distribution. This suggests
that capturing asymmetry in volatility dynamics contributes to better forecast accuracy. The
IGARCH model exhibits negative R2OOS values, indicating poor forecasting performance and a
tendency to overfit past volatility patterns.

The Model Confidence Set (MCS) test results confirm that the models have statistically equiv-
alent predictive capacities, as all p-values exceed the 0.05 threshold. This implies that even if there
were slight variations in MSE, they would not be statistically significant, reinforcing the robustness
of multiple models in predicting NVDA’s volatility.

Table VI: Matrix of p-values of Diebold-Mariano tests between models (normal distribution)

Models GARCH iGARCH GJR-GARCH Riskmetrics
GARCH - 0,408 1,000 1,000
iGARCH 0,408 - 0,434 1,000
GJR-GARCH 1,000 0,434 - 0,584
Riskmetrics 1,000 1,000 0,584 -

To complete the comparison of the predictive capacities of the models, we can use the Diebold
Marianno (DB) Test. Using Tables VI, VII and VIII, we observe that all the p-values are greater
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than 0.05. At the 5% risk threshold, we cannot reject the null hypothesis. Therefore, we conclude
that the models provide the same forecasting quality.

Table VII: Matrix of p-values of Diebold-Mariano tests between models (Student distribution)

Models GARCH iGARCH GJR-GARCH Riskmetrics
GARCH - 1 1 0,973
iGARCH 1 - 1,000 0,725
GJR-GARCH 1 1 - 1
RISK 0,973 0,725 1,000 -

The cross-distribution DM test results in Table VIII confirm that assuming a Student distribu-
tion instead of a Normal distribution does not lead to significant differences in forecast accuracy.
This suggests that heavy-tailed distributions may not provide a notable advantage in predicting
NVDA volatility within our sample period.

Table VIII: Matrix of p-values of Diebold-Mariano tests between models (Student vs Normal dis-
tributino)

Models GARCH student iGARCH student GJR-GARCH student Riskmetrucs student
GARCH normal 0,426 0,420 1 1
iGARCH normal 1 1 1 1
GJR normal 0.4882 1 1,000 0,585
RISK normal 0.9743 1 0,581 1

In conclusion, our analysis indicates that while some models (such as GJR-GARCH) slightly
outperform others in certain metrics, overall, all models provide statistically equivalent forecasting
accuracy.

5 Conclusion

This study investigates the volatility of Nvidia’s stock returns over the period 2018-2023 using
GARCH-family models. Our analysis began with an examination of Nvidia’s financial and market
characteristics, highlighting its dominant position in the semiconductor industry and its strong
influence in AI-related markets. We then explored the statistical properties of NVDA returns. To
model this volatility, we estimated four different GARCH-family models: GARCH, GJR-GARCH,
IGARCH, and RiskMetrics, under both normal and Student distributions. Our results showed
that all models satisfy stationarity and significance constraints, with the GJR-GARCH model
consistently standing out as the most effective in capturing asymmetric volatility shocks. However,
while the GJR-GARCH model demonstrated slightly better predictive performance, statistical
comparison tests, including the Diebold-Mariano test and the Model Confidence Set, indicated
that no single model significantly outperformed the others in forecasting accuracy. As Nvidia
continues to dominate the AI and semiconductor industry, its stock remains highly reactive to
market trends and technological advancements. The increasing demand for computing power,
coupled with macroeconomic factors, will likely sustain the stock’s volatility in the coming years.
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